- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kosiba, Karen A (2)
-
Nesbitt, Stephen W (2)
-
Trapp, Robert J (2)
-
Weiss, Christopher C (2)
-
Wurman, Joshua (2)
-
Aikins, oshua (1)
-
Alford, A Addison (1)
-
Bell, Tyler M (1)
-
Biggerstaff, Michael I (1)
-
Blind-Doskocil, Leanne (1)
-
Bodine, David (1)
-
Bruning, Eric (1)
-
Chmielewski, Vanna C (1)
-
Coffer, Brice (1)
-
Coniglio, Michael C (1)
-
Dawson, Daniel T (1)
-
Elmore, Kim (1)
-
French, Michael (1)
-
Knupp, Kevin R (1)
-
Kollias, Pavlos (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cold pools play a range of important roles in quasi-linear convective systems (QLCSs), including maintenance via the development of new convective cells as well as baroclinic generation of horizontal vorticity. Although a number of QLCS cold pools have been characterized in the literature using one or a few sensors, their variability (both internally and across a range of environments) has still not been widely studied. This gap in knowledge extends particularly to high-shear low-CAPE (HSLC) convective environments common to the cool season in the southeastern United States, where the Propagation, Evolution, and Rotation in Linear Storms (PERiLS) field campaign was focused. PERiLS specifically targeted environmental and storm-scale processes in QLCSs, including their cold pools. Our analysis focuses on the heterogeneity and temporal variability of cold pools across short time and spatial scales using numerous surface and sounding observations across five PERiLS QLCSs. The PERiLS cold pools are generally weaker than those previously studied in warm-season, midlatitude QLCSs, likely due to the lower CAPE and higher relative humidity values common to HSLC environments during PERiLS. Nevertheless, the distributions of most PERiLS cold pool variables at least partially overlap with those of previously studied QLCSs. The median PERiLS measurement reveals a cold pool that is ≈2.5 km deep, having a surface temperature decrease of ≈−6°C, and a peak outflow wind gust of ≈13 m s−1. In the spirit of a “cold pool audit,” we present the internal and case-to-case variability of these particularly well-observed QLCSs. Significance StatementEvaporatively cooled air masses (“cold pools”) are created by quasi-linear convective systems (“QLCSs,” also called “squall lines”), and they in turn play important roles in the maintenance and structures of QLCSs. There have been relatively few direct measurements of cold pool variability, especially for the frequently severe QLCSs occurring during the cool season in the southeastern United States. Numerous surface and upper-air measurements from the recent Propagation, Evolution, and Rotation in Linear Storms (“PERiLS”) field experiment are used to document Southeastern QLCS cold pools. The PERiLS cold pools were surprisingly similar to, albeit somewhat weaker than, those found in prior studies of warm-season QLCSs in other regions.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Kosiba, Karen A; Lyza, Anthony W; Trapp, Robert J; Rasmussen, Erik N; Parker, Matthew; Biggerstaff, Michael I; Nesbitt, Stephen W; Weiss, Christopher C; Wurman, Joshua; Knupp, Kevin R; et al (, Bulletin of the American Meteorological Society)Abstract Quasi-linear convective systems (QLCSs) are responsible for approximately a quarter of all tornado events in the U.S., but no field campaigns have focused specifically on collecting data to understand QLCS tornadogenesis. The Propagation, Evolution, and Rotation in Linear System (PERiLS) project was the first observational study of tornadoes associated with QLCSs ever undertaken. Participants were drawn from more than 10 universities, laboratories, and institutes, with over 100 students participating in field activities. The PERiLS field phases spanned two years, late winters and early springs of 2022 and 2023, to increase the probability of intercepting significant tornadic QLCS events in a range of large-scale and local environments. The field phases of PERiLS collected data in nine tornadic and nontornadic QLCSs with unprecedented detail and diversity of measurements. The design and execution of the PERiLS field phase and preliminary data and ongoing analyses are shown.more » « less
An official website of the United States government
